The Operator Approach to Entropy Games
نویسندگان
چکیده
Entropy games and matrix multiplication games have been recently introduced by Asarin et al. They model the situation in which one player (Despot) wishes to minimize the growth rate of a matrix product, whereas the other player (Tribune) wishes to maximize it. We develop an operator approach to entropy games. This allows us to show that entropy games can be cast as stochastic mean payoff games in which some action spaces are simplices and payments are given by a relative entropy (Kullback-Leibler divergence). In this way, we show that entropy games with a fixed number of states belonging to Despot can be solved in polynomial time. This approach also allows us to solve these games by a policy iteration algorithm, which we compare with the spectral simplex algorithm developed by Protasov. 1998 ACM Subject Classification G.2.1 Combinatorial Algorithms, F.2.1 Numerical Algorithms and Problems
منابع مشابه
Entropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملSome properties of the parametric relative operator entropy
The notion of entropy was introduced by Clausius in 1850, and some of the main steps towards the consolidation of the concept were taken by Boltzmann and Gibbs. Since then several extensions and reformulations have been developed in various disciplines with motivations and applications in different subjects, such as statistical mechanics, information theory, and dynamical systems. Fujii and Kam...
متن کاملA note on inequalities for Tsallis relative operator entropy
In this short note, we present some inequalities for relative operator entropy which are generalizations of some results obtained by Zou [Operator inequalities associated with Tsallis relative operator entropy, {em Math. Inequal. Appl.} {18} (2015), no. 2, 401--406]. Meanwhile, we also show some new lower and upper bounds for relative operator entropy and Tsallis relative o...
متن کاملA Characterization of the Entropy--Gibbs Transformations
Let h be a finite dimensional complex Hilbert space, b(h)+ be the set of all positive semi-definite operators on h and Phi is a (not necessarily linear) unital map of B(H) + preserving the Entropy-Gibbs transformation. Then there exists either a unitary or an anti-unitary operator U on H such that Phi(A) = UAU* for any B(H) +. Thermodynamics, a branch of physics that is concerned with the study...
متن کاملSolving matrix games with hesitant fuzzy pay-offs
The objective of this paper is to develop matrix games with pay-offs of triangular hesitant fuzzy elements (THFEs). To solve such games, a new methodology has been derived based on the notion of weighted average operator and score function of THFEs. Firstly, we formulate two non-linear programming problems with THFEs. Then applying the score function of THFEs, we transform these two problems in...
متن کامل